Open main menu

EnglishEdit

 
English Wikipedia has an article on:
Wikipedia

EtymologyEdit

Coined by Donald Knuth in his 1974 novelette Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness. The concept had been developed by British mathematician John Conway for his game theoretic research of the board game go. Conway had simply called them numbers, but subsequently adopted Knuth's term and used it in his 1976 book On Numbers and Games.

NounEdit

surreal number (plural surreal numbers)

  1. (mathematics) Any element of a field equivalent to the real numbers augmented with infinite and infinitesimal numbers (respectively larger and smaller (in absolute value) than any positive real number).
    Conway's construction of surreal numbers relies on the use of transfinite induction.
    Conway's approach was to build numbers from scratch using a construction inspired by his game theory research; the resulting class of surreal numbers proved much larger than the class of real numbers.
    • 1986, Harry Gonshor, An Introduction to the Theory of Surreal Numbers, Cambridge University Press, 1987, Paperback, →ISBN.
    • 2012, Fredrik Nordvall Forsberg, Anton Setzer, A Finite Axiomatisation of Inductive-Inductive Definitions, Ulrich Berger, Hannes Diener, Peter Schuster, Monika Seisenberger (editors), Logic, Construction, Computation, Ontos Verlag, page 263,
      The class2 of surreal numbers is defined inductively, together with an order relation on surreal numbers wich is also defined inductively:
      • A surreal number   consists of two sets   and   of surreal numbers, such that no element from   is greater than any element from  .
      • A surreal number   is greater than another surreal number  ,  , if and only if
      − there is no   such that  , and
      − there is no   such that  .
    • 2018, Steven G. Krantz, Essentials of Mathematical Thinking, Taylor & Francis (Chapman & Hall/CRC Press), page 247,
      Here we shall follow Conway's exposition rather closely. Let   and   be two sets of numbers. Assume that no member of   is greater than or equal to any member of  . Then   is a surreal number. All surreal numbers are constructed in this fashion.

TranslationsEdit

Further readingEdit