Open main menu

Wiktionary β

See also: Fourierseries



The first four partial sums of the Fourier series decomposition of a square wave


Named after French mathematician and physicist Joseph Fourier (1768-1830), who pioneered research into such series and their application to problems of heat transfer and vibration.


Fourier series (plural Fourier series)

  1. (mathematics, analysis) Any series resulting from the decomposition of a periodic function into terms involving cosines and sines (or, equivalently, complex exponentials).
    • 1951 [Blackie & Son], R. C. H. Young (translator), Konrad Knopp, Theory and Application of Infinite Series, [1947, Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, 4th Edition], 1990, Dover, Unabridged unaltered reprint of 2nd English Edition, page 493,
      As we have seen (pp. 369—370), the question of the necessary and sufficient conditions under which the Fourier series of an integrable function converges and represents the given function is one which presents very great difficulties.
    • 2001, David Cruz-Uribe (translator), Javier Duoandikoetxea Zuazo, Fourier Analysis, [1995, Javier Duoandikoetxea Zuazo, Análisis de Fourier], American Mathematical Society, page 20,
      There are excellent discussions of Fourier series and integrals in Katznelson [10] and Dym and McKean [4]. The book by R. E. Edwards [5] is an exhaustive study of Fourier series from a more modern perspective.
    • 2006, K. F. Riley, M. P. Hobson, S. J. Bence, Mathematical Methods for Physics and Engineering: A Comprehensive Guide, Cambridge University Press, 3rd Edition, page 415,
      Unlike Taylor series, a Fourier series can describe functions that are not everywhere continuous and/or differentiable.

Derived termsEdit

Related termsEdit


Further readingEdit